Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Immunol ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2245555

ABSTRACT

Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.

2.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1814233

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
3.
Nature ; 603(7902): 700-705, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661969

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , Animals , COVID-19/epidemiology , Cell Line , Cricetinae , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virus Replication
4.
Cell Rep ; 35(3): 109014, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1163485

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2.


Subject(s)
COVID-19/genetics , Reverse Genetics , SARS-CoV-2/genetics , Animals , Cricetinae , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL